M1.

Alternative method 1

$$
2=k \sqrt{36} \text { or } \sqrt{36}=6
$$

$(k=) 2 \div$ their 6 or $\frac{1}{3}$
$5 \div$ their $\frac{1}{3}$ or $15(\sqrt{a}=)$
oe

Alternative method 2

$$
2 k=\sqrt{36} \text { or } \sqrt{36}=6
$$

($k=$) their $6 \div 2$ or 3
$5 \times$ their 3 or $15(\sqrt{a}=)$
oe

Alternative method 3

$$
2 k=\sqrt{36} \text { or } \sqrt{36}=6
$$

$$
5 \div 2 \text { or } 2.5
$$

their $6 \times$ their 2.5 or $15(\sqrt{a}=)$ dep on M1 M1

M2.
(a) C

B1
(b) $y \quad \alpha \sqrt{x}$ or $y=k \sqrt{x}$
oe

$$
\text { or } c y=\sqrt{x}
$$

$$
\begin{aligned}
& 36=k \sqrt{100} \\
& \text { or } \quad k=3.6 \\
& \text { or } \quad y=3.6 \sqrt{x}
\end{aligned}
$$

$$
o e
$$

$$
36 c=\sqrt{100}
$$

$$
\begin{aligned}
& \text { or } c=\frac{5}{18} \text { or } 0.277 \ldots \\
& \text { or } \frac{5}{18} y=\sqrt{x}
\end{aligned}
$$

$$
\begin{aligned}
& 3.6 \times \sqrt{250} \\
& \text { or } 56.9(\ldots) \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& 250
\end{aligned} \frac{5}{18}
$$

57

M3.(a) $\quad R=\frac{k}{A}$ or $R \quad \alpha^{\frac{1}{A}}$

$$
R=\frac{1}{k A} \text { or } R \quad \alpha \frac{1}{k A}
$$

$12.1=\frac{k}{1.5}$
or $(k=) 12.1 \times 1.5$
or $(k=) 18.15$ or 18.2 or 18

$$
12.1=\frac{1}{1.5 k}
$$

$$
\text { or }(k=) \frac{1}{1.5 \times 12.1}
$$

$$
\text { or }(k=) 0.055(\ldots)
$$

$$
R=\frac{18.15}{A} \text { or } R=\frac{1}{0.055 A}
$$

oe
Note: reciprocal of 18.15 is $0.055(\ldots)$
(b) $\frac{\text { their } 18.15}{4}$ or $\frac{1}{4 \times \text { their } 0.055}$
oe
4.5(375)

$$
\begin{aligned}
& \text { M4.(a) } y \text { a } x \text { or } y=k x \text { or } c y=x \text { oe } \\
& 28 \div 7 \text { or } 4 \text { seen } \\
& 7 \div 28 \text { or } 0.25 \text { seen }
\end{aligned}
$$

$$
\begin{aligned}
& 28=k \times 7 \text { or } k=4 \text { oe } \\
& c \times 28=7 \text { or } c=0.25
\end{aligned}
$$

$y=4 x$ oe
Accept $y=k x$ and $k=4$
(b) 4×12 or their 4×12

Must be direct proportion

48

M5.(a) $y a^{\frac{1}{x}}$ or $y=\frac{\frac{k}{x}}{}$ oe $\begin{aligned} & \times 9 \text { or } 45 \text { seen }\end{aligned}$
$5=\frac{\frac{k}{9}}{}$ oe
or $k=45$
M1dep
$y=\frac{45}{x}$ oe
(b) their $45 \div 15$

3
ft on inverse proportion
A1ft

M6.
(a) $\quad M \infty r^{3}$ or $M \div r^{3}=\mathrm{k}$ or $M=r^{3} \times \mathrm{k}$

Accept any letter for k

$$
\begin{gathered}
200=\mathrm{k} \times 5^{3} \text { or }(\mathrm{k}=)^{\frac{200}{5^{3}}} \text { or } \mathrm{k}=1.6 \\
\text { oe }
\end{gathered}
$$

$$
8^{3} \times \frac{200}{5^{3}}
$$

oe
$8^{3} \times$ their 1.6 or $8^{3} \times$ their k
M1
819.2 or 819
(b) $3125=r^{8} \times$ their $\frac{200}{5^{3}}$

Accept $3125=r \times$ their 1.6

$$
\begin{aligned}
& \sqrt[3]{\frac{5^{3} \times 3125}{200}}(=r) \\
& \qquad \text { Accept } \sqrt[3]{\frac{3125}{\text { their1.6 }}} \text { or } \sqrt[3]{1953.125}
\end{aligned}
$$

M7.(a) $y=\frac{k}{x^{2}}$ or $y \alpha \alpha^{\frac{1}{x^{2}}}$

$$
\begin{aligned}
8=\frac{k}{3^{2}} \text { or } k & =72 \\
& \begin{array}{l}
\text { This mark is for substituting } 8 \text { and } 3 \text { into their proportionality } \\
\text { equation }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{72}{x^{2}} \text { or } y x^{2}=72 \\
& \qquad \text { oe eg } \frac{y}{72}=\frac{1}{x^{2}}
\end{aligned}
$$

(b) $y=\frac{72}{12^{2}}$

> ft their equation from (a)

$$
\frac{1}{2} \text { or } 0.5
$$

M8. $W \propto^{\frac{1}{x}}$ or $W \propto \frac{k}{x}$ or $W x=k$
Accept any letter for k

$$
6=\frac{k}{20}
$$

$$
\text { or } \frac{24}{20}=\frac{6}{W} \text { oe }
$$

$$
\begin{aligned}
k=120 \text { or } W x= & 120 \text { oe } \\
& 24 W=120
\end{aligned}
$$

$120 \div 24$ oe

$$
6 \div 1.2
$$

5

